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1. Introduction. During the last three years we have been witnessing the growth 
of a new theory for n-person characteristic-function games-the theory of bargain- 
ing sets. This theory tries to answer the following basic question: Given a partition 
of the players into coalitions, how should the payoff to each of these coalitions be 
divided among its members? 

Various answers are given in [1], [4] and [3], where several bargaining sets are 
defined. The bargaining sets are sets of "stable" payoff distributions; roughly 
speaking, a payoff distribution is "stable" if the players in each coalition can effec- 
tively counter any threats by their coalition partners to obtain higher payoffs by 
leaving the old coalition in order to combine with outside players. This intuitive 
notion can be made precise in a number of different ways, leading to the variou'q 
bargaining sets. 

For several bargaining sets there are general existence theorems ([4], [11] and 
[31]); for other bargaining sets, general existence theorems cannot be proved [1, 
Section 7]. After the existence question had been settled, the problem of computing 
the bargaining sets arose. Since every bargaining set is given by a system of linear 
inequalities in the space of the payoffs [1, Theorem 2.1] there is no difficulty in 
principle, and the only problem is to find a practical method of computation. Ini 
this paper we give such a method for the kernel, a bargaining set that was defined 
and investigated by Davis and Maschler in [3], and has been the subject of con- 
siderable subsequent research [9, 12, 13]. The kernel is the easiest of the bargaining 
sets to compute. 

The computational method described here is practical for games with 5 or fewer 
players, whose characteristic functions take small integer values. For such games, 
a computer program was written for the CDC-1604A at the Weizmann Institute 
of Science; all computations reported here were performed on that machine. The 
program was used to compute the kernels of all weighted majority games with 5 
or fewer players, and all extreme zero-sum games with 5 players; the results of 
these computations are tabulated in this paper. 

The kernel is defined in ?2. In ?3 we discuss the problems connected with com- 
puting the kernel, and describe our method. ?4 contains several estimates needed 
for the programming of the method. In ??5 and 6 a detailed description of the pro- 
gram is given. The tables mentioned above are in ??7 and 8, together with descrip- 
tive material; in particular, in ?7 it is shown how the table in that section may be 
applied to certain games with more than 5 players. 

It should be emphasized that the method used here is applicable for a class of 
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comnputationial problems of which the bargainiing set is typical, but that need have 
no relation with game theory. Specifically, if a set in euclidean space is defined by a 
(possibly large) niumber of linear inequalities connected (possibly in a very com- 
plicated way) by "or" and "and", and if it is desired to express the set as a union 
of convex polyhedra, then the niethod of this paper mnay be applicable if the dimen- 
sion is sufficiently small and the coefficients of the inequalities are small integers. 

2. Definitions. In this sectioin we give the basic defiinitions that are used in the 
rest of the paper. 

An n person game is a set N with n mem-bers, together with a real function v, 
defined on the subsets of N. v is the characteristic function of the game. The mem- 
bers of N are called players, anid will be denoted by the numbers 1, * * *, n. Subsets 
of AV are called coalitions. We assumlle that v satisfies the following conditions: 
v({i}) = O for i = 1, * * *, n, v(0) = O, and v(S) > O for all S C N. 

Let (N, v) be an n-person game. A coalition structure is a partition of N. In- 
tuitively, when (N, v) is played, the players are partitioned according to a certain 
coalition structure, and each coalition S in the partition divides its share v(S) 

.2 among its members. A payoff vector is an n-tuple {xi iE Nof real numbers, one num- 
ber for each i E N. If each player refuses to receive less than what he can get 
alone, namely zero, then a possible outcome of the game, which will be called an 
individually rational payoff configuration, is a pair (x, B), where (B is a coalition 
struicture, and x, the distribution of the payoffs, is a payoff vector that satisfies: 
xi O for i = 1, ,n, and EB Xi = v(B) for all B E 6. 

Let (x, 6@) be an individually rational payoff configuration. For each coalition 
S, set 

e(S,x) = v(S) - Z 
xk.. 

Now let i, j E B E 6@ and i 5 j; set 

T7 = S :S c N, i E S andj ( SI, 

and 

sij(x) = inax {e(S, x): S E Ti,}. 

We say that i outweighs j if xj > 0 and sij(x) > sji(x). The payoff vector x is 
balanced if there exists no pair of players h and k in the same B in (B such that h 
outweighs k. The kernel is the set of all balanced payoff vectors. It depends, of 
cotirse, on the coalition structure i3. 

Intuitively, when i and j are in the samle coalition of (B and sij (x) is non-nega- 
tive, then it is the maximum amount with which i can "manouevre" (i.e. take for 
himself or offer to his partners) in case he wants to set up a new coalition that 
will exclude j. When sij (x) is negative it no longer has the above meaning, but we 
think it is still a measure of i's power to threaten j. Of course player j is im-mune 
fromn threats if xj = 0, for he can get 0 without help from any other player. But if 
xj > 0, then i outweighs j if i's power to threaten j exceeds i's power to threaten i. 

2 Formally, it is a function from N to the real numbers. 
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The payoff vector is balanced if no player outweighs another player in the same 
coalition. 

The reader who wishes a nmore extensive intuitive and theoretical (rather than 
computational) discussion of the kernel concept, as well as a detailed discussion of 
the kernel of a particular game, is referred to [3]. Also, in [3] it is proved that the 
kernel is never void, i.e. if (N, v) is an n-person game and (B is a coalition structure, 
then there always exists a payoff vector x that is balanced [3, Theorem 5.4]. How- 
ever, most of the methods of this paper do not depend oni [3], and a reader not 
familiar with [3] should have no difficulty in understanding this paper. 

3. Method of Computation. Let (N, v) be an n-person game and let 6( be a co- 
alition structure. Denote by X(6M) the set of all payoff vectors x such that (x, 63) 
is an individually rational payoff configuration. Explicitly, 

X(63) = : xi _ 0 for i = 1, , n, and Ex = v(B) for B E 
B 

Our problem is to find those payoff vectors in X (63) that belong to the kernel. 
The computational method that we use is based on the fact that for each 1B, 

the kernel is a polyhedron that is not necessarily convex; that is, it is a finite union 
of convex polyhedra. To see this, note that a vector x is in the kernel if and only if 

(3.1) x E X(63) and for i- 1,.. , n, xi = 0 or sij(x) ? sji(x) 

for all j E B - { i}, where B is that coalition of 63 that contains i. 

Now sij (x) (and therefore also sji (x)) is the maximumn of a finite number of linear 
functions of x, i.e. funletions of the form a * x + c, where a is a vector and c a scalar. 
Therefore (3.1) may be stated as a sentence 8 built from weak linear inequalities, 
by means of iterated conjunctions and disjunctions (i.e. by using the connectives 
"and" and "or"). Now any sentence built in such a way froim a number of "prini- 
tive statements" (in our case linear inequalities), nlo matter how complex its struc- 
ture, is equivalent to an appropriately chosen disjunction of conjunctions of the 
primitive statements. Therefore there are linear functions gpq (x), where p and q 
run over finite index sets (say fronm1 1 to P and 1 to Q respectively), such that (3.1) 
is equivalent to: 

(3.2) There is a p such that for all q, gpq(x) > 0. 

Each of the q, (x) appears in the sentence 8, and it mnay be verified that each one 
is therefore either of the form Es i -v (S) for some S, or of the forim - 
ET Xi- (v (S) - v (T) ) for some S and T; in particular, the gpq have rational co- 
efficients only, except possibly for the constant terni. Fronm the fornm (3.2) it follows 
imnmediately that the kernel is the union of P convex polyhedra, each determined 
by Q linear inequalities. 

The process of reducing a complex senitence like (3.1) to the forni (3.2) will be 
familiar to the reader from the Propositional Calculuis; it consists essentially of 
repeated applications of the distributive law 

a and (b or c) 4 (a and b) or (a and c). 

For fixed n and 63 it is of course possible explicitly to carry out this procedure, 
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thereby obtaining numerical values for P and Q and listing all the gpq (with the 
values of v entering as parameters). But our purpose in the foregoing was merely 
to show that the kernel is the union of finitely many convex polyhedra; this we have 
done, and for this purpose it is not necessary to exhibit P, Q, and the gpq explicitly. 

We wish to "compute" the kernel; what does this mean? If the kernel consists 
of one point, we would like to know the coordinates of that point; if it is an interval 
we would like the end points of the interval; if it is the union of two intervals, we 
would like the end points of each of the intervals. As we have seen, the kernel is a 
finite union of convex polyhedra; the end result of a "computation" of the kernel 
should be a listing of these convex polyhedra, where each one of them is described 
by listing its extreme points (i.e. vertices). Theoretically, we know how to achieve 
a breakdown into convex polyhedra: by using the rules of the propositional calculus 
to change (3.1) to (3.2). Possibly this approach could be used on a practical, com- 
putational level as well. Essentially, (3.2) presents the kernel as the union of P 
convex polyhdera, each one defined by a set of linear inequalities. A practical method 
for finding the vertices of a convex polyhedron defined by a set of inequalities is 
given by Balinski in [2]. Couldn't we find (3.2) explicitly, then use Balinski's method 
to calculate the vertices of each of the P resulting convex polyhedra? 

The answer is no, and the reason is that P is very large-for n = 5, probably 
on the order of 104 or 105. To apply Balinski's method to so many polyhedra would 
be prohibitive. The very large value for P might lead the reader to think that it is 
really necessary to use many convex polyhedra to describe a kernel, but nothing 
could be further from the truth. The kernel is usually very simply described; in- 
deed, it often consists of a single point. In the tables in ??7 and 8, there are only 
three instances in which the kernel is not itself convex, and in those cases it is the 
union of 2 convex polyhedra. The representation (3.2) is inefficient, because it holds 
for all games simultaneously; the characteristic function enters into the individual 
gpq only as a parameter, and affects neither P nor Q. For a particular game, most 
of the P convex polyhedra are empty, or coincide with each other. What is needed 
is some way of computing the kernel without first writing it explicitly in the form 
(3.2). We shall now outline our solution to this problem. 

From now on it will be assuined that (N, v) is integral, i.e. that the characteristic 
function v takes integer values only. In theory, everything in the sequel applies to 
arbitrary integral games, and so by S-equivalence [8, p. 197] to arbitrary rational 
games. In practice, though, the method is useable only when the values of v are 
small integers, probably 5 or 6 at most. 

For the given game (N, v) and coalition structure 6~, denote by Cl, *** Cp 
the convex polyhedra defined by (3.2); that is, 

C - {x C En :gpq(x) > 0forq = 1, -, Q}. 

A given Cp may be empty, or it may coincide with others having different indices. 
The purpose of the computation is to provide a list of the nonempty Cp's, each one 
exactly once, and each one described bv listing its extreme points. The straight- 
forward way of doing this would seem to be first somehow to characterize the Cp's 
in question, then to determine the extreme points of each one. For the reasons 
explained above, this straightforward way is impractical. The approach we use is 
apparently "upside-down": first all the extreme points of all the C. are listed, and 
only afterwards are they sorted out. 
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Let x be one of the extreme points in question. x is the unique solution of a sys- 
tem of n linear equations, which have one of the following two forms: Es xi = 
v(S), or Esxz - ETXi = v(S) - v(T). Since the game is integral, x must be a 
rational point, and it has a denominator which does not exceed a bound KnX which 
is not greater than the maximal value attained by a determinant of order n whose 
entries are 1, 0, or-1. Now, if for each rational point in X(63) with denominator3 < 

Kn X we determine whether or not that point is in the kernel (i.e. satisfies the in- 
equalities (3.1 )), we obtain a list of points that contains all the extreme points in 
question. Moreover, if with each point x that we have found in this way we list 
the values e (S, x) for all S C N, then we shall be able to group the points according 
to the various C, to which they belong. It remnains only to determine whether a 
given x is actually extreme in at least one of the Cp ; how this is done is described 
below. 

Strictly speaking, the method just outlined can be exploited only to solve 4- 
person games; when n > 4, there are too many rational points with denominator < 

Kn . To overcome this difficulty, we use the following procedure: first, for a certain 
natural K we examine all the rational points with denominator K, to find which 
of them are near the kernel, i.e. satisfy the inequalities (3.1) approximately (within 
E, say). This part of the procedure is called step A. We then note that the kernel 
itself must be contained in a neighborhood of the set of points found in step A, the 
size of the neighborhood being determined by e. Now the extreme points that we 
are seeking must all be in this neighborhood, inust be rational with denominator 
not exceeding Kn , and must satisfy the inequalities (3.1 )-or equivalently, (3.2)- 
precisely. Moreover, for each such extreme point x, the rank of those of the linear 
inequalities in (3.2) that are actually satisfied as equalities by x must be n; indeed 
this is a necessary and sufficient condition for extremality. We therefore check the 
inequalities (3.1) for all points in X (6s) with denominators :i K., that are in the 
neighborhood determined by step A. Those points that are found to satisfy the 
inequalities are then examined for extremality by the rank method. This second 
(and last) part of the procedure is called step B. 

To avoid round-off, integer arithmnetic was used throughout the program. 

4. Various Estimates. In this section we shall compute certain bounds needed 
for the programming of steps A and B for five person games. 

We denote by Qn the maximal value attained by a determinant of order n whose 
entries are 1, 0, or -1. Hadamard's inequality yields Q, n/2, so Q < 5 55.9. 
In fact, Q5 48. Actually we are interested not in Q5 but in K6. 

LEMMA 4.1. Kr ? 36. 
Proof. Let A be a 5 X 5 regular matrix whose entries are 0, 1 or -1, b an integral 

vector and x the solution of the system of equations Ax = b. If all the zeros of A 
are contained in at most two rows or two columns, then I A 0 (mod 4), and 
each minor of order 4 is a multiple of 2. So in this case the denominator of x does 
not exceed 48/2 = 24. Next, suppose that the zeros of A are not in two rows or two 
columns. Clearly, it is sufficient to show that when there are exactly three zeros,4 

3 I.e., least common denominator of all the coordinates. 
4 If there are four zeros, not contained in two rows or two columns, then Hadamard's 

inequality gives I A I < 36. 
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I A ? 36. W.l.o.g. we may assume that I A I has the following form: 

0 a12 a13 a14 1 

a2l 0 a23 a24 1 

a3l a32 0 a34 1 

a4l a42 a43 a44 1 
1 1 1 1 1 

We now develop I A I with respect to the last two rows, using Laplace's rule. It is 
not difficult to see that at most six of the 2 X 2 determinants that appear are non- 
zero, and that of the three 3 X 3 determinants with only one zero, only one can 
equal 4, and the other two are not greater than 2; the other determinants are not 
greater than 3. Using these remarks we obtain I K6 I < 36. 

The exact value of K5 is not known. 
Let (N, v) be an integral 5-person game, and let 63 be a coalition structure. The 

number of rational points in X(GM) with denominator K depends on the values 
v (B) for B E M?. We shall now compute it in the following simple case: 3 = I N) 
and v (N) = 1. Denote by Z (n, K) the numnber of integral points satisfying xi > 0, 
i- 1, .,n and D.1 xi= K. Then 

K 

(4.2) Z (n, K)= Z (n-1, j). 
j=O 

Using this relation we obtain 

(4.3) Z (5, K) = (K4 + 10K3 + 35K2 + 50K + 24)/24. 

The number of rational points in X (M3) with denominator not exceeding K6 
is bounded by S_k=1 Z (5, K), which is of the same order of magnitude as 
ZSk=1 K4/4! 36'/5!. 

The following lemma gives an estimate of the density of the rational points in 
X (B) with given denominator. 

LEMMA 4.4. Let K be a natural number. If x E X ((B), then there is a rational 
point y E X (63) with denominator K, such that: 

(4.4.1) if x 0 then yi = 0, and 

(4.4.2) I - I < 47(5K) =-8(K), for 1, ... , 5. 

The proof, which is elementary, is omitted. We remark that the bound 4/ (5K) 
cannot be improved. 

We now want to estimate the rate of variation of the functions sj (x). A con- 
venient norm is 11 x 1 = imax I I x1 l, I x6 l}. 

LEMMA4.5. Let i, j E B E Mf, i # j, and let hij(x) = sij(x) - sji(x), for x E 
X(Mf). If x and x' are in X(B), then I h(x) -h(x')j ?< 411 x -X' I. 

Proof. Let sij(x) = e(S, x), sij(x') = e(S', x'), sij(x) = e(T, x) and sji(x') = 

e(T', x'). We may assume that h(x) > h(x'); then we have I h(x) - h(x')I = 

h(x) - h(x') = e(S, x) - e(T, x) - {e(S', x') - e(T', x')} < e(S, x) - 

e(S,x') + e(T',x') - e(T',x) = S(Xk - Xk) + ZT'(Xk - Xk'). If S nf T' 
or S U T' # N, then the number of the differences that are not cancelled does 
not exceed 4. So, in this case I h(x) - h(x')I ? 411 x -x' j IfS if T' _ 0 and 
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S U T' = N, we have S(Xk' - Xk) = T'(Xk - Xk ). One of the sets, S or T', 
does not contain more than two players; so also in this case h (x) - h (x') 
4 11 x-x' j1. This completes the proof of the lemma. 

The following definitions and lemma are the core of step A. 
A subset A of X (63) is a a-kernel, if for each x in the kernel there is a y E A 

such that y - x II a 3. A point x E X((IB) is e-balanced if it satisfies the following 
systems of inequalities: 

for i = 1, ... , n xi = 0, or sij(x) _ sji(x) - E 
(4.6) 

for all j E B - {i}, where B is that coalition of (3 that contains i. 

LEMMA 4.7. Let K be a natural number. The set of rational points in X ((B) with 
denominator K that are 3/K-balanced, is a 4/5-kernel. 

Proof. Let x C X(63) be balanced. Using Lemmia 4.4 we obtain a rational y 
with denominator K, with the same zero coordinates as x and such that I Xj-yj I < 
4/(5K), j = 1, *, . We shall complete the proof by showing that y is 3/K-bal- 
anced. If y is not 3/K-balanced then there exist players i, j E B E B0, i 5 j, such 
that yi > 0 and hij(y) = sij (y) - sji (y) < - 3/K. Since hij (y) is a irational 
number with denominator K, we must have hij (y) < -4/K. On the other hand, 
using Lemma 4.5, we have 

hij(y) = hij(x) + (hij(y) - hij(x)) 

> hij(x) - hij(y) - hij(x) I - hij(y) - hij(x)| 
> -4 1 x -y 11 > -4 * 4/(5K) > -4/K 

a contradiction which shows that the assumption that y is not 3/K-balanced is 
false. 

5. Step A. Let (N, v) be an integral five person game and 63 a coalition structure. 
The problem that confronts us in step A is how to choose fromn all the rational 
points in X ((), a set of points, with the same (not too large) denominator K, that 
will be a 6-kernel with volume as small as possible. Given K, Lemma 4.4 and the 
subsequent remark tell us that the best possible a is 3(K) = 4/(5K). Having 
determined a we have to decide upon the way of choosing the points, so as to ob- 
tain a a (K)-kernel with a minimum number of points. We do this by choosing all 
E-balanced points, where e is deternmined by Lemma 4.7, i.e., E = E(K) = 3/K. 

We can now describe step A formally. Let K be a natural number and E= 3/K. 
Step A consists of finding all rational points in X (63) with denominator K that are 
E-balanced. 

There remnains only the problem of deternmining K. If K is determined then so 
is -, and therefore the set of points that will pass step A is determined. In step B 
we shall have to check all the rational points with denominator not exceeding K5, 
that are in a 5 (K)-neighborhood of this set. Increasing K increases the number 
of points that inust be checked in step A, but, on the other hand, decreases E, and 
therefore decreases the proportion that will pass step A; in addition 6 (K) also 
decreases, so that we can expect that the "volume" we shall have to inspect in step 
B decreases. This conjecture was verified in the experiments that we performed. 
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We carried out step A for various games and coalition structures, with denomina- 
tors K in the range 12-24, and observed that the number of points that passed 
step A was independent of K in this range; we concluded that increasing K de- 
creases the time needed for step B. Clearly, increasing K increases the time needed 
for step A itself. Now, what we want, is to minimize the total time needed for steps 
A and B, so we have to find a compromise. A description of how this worked out 
for simple games may be found toward the end of ?7. 

The number of points that passed step A varied greatly in the various experi- 
nients that we perfornmed. We checked only characteristic functions v and coalition 
structures 6i where the values v (B) for B E 6( were either 1 or 0. For the denomina- 
tor 24 we received from 4 to 240 points. The calculations in ?4 (see (4.3)) show that 
when c = IN) and v (N) = 1, the number of points that must be checked in step 
A is about 22000, so that the proportion that passed step A did not exceed approxi- 
mately one percent. 

We shall now proceed to describe the computations. The data of step A is the 
characteristic function v, the coalition structure (B, the denominator K and e = 

3/K. The computer multiplies v and e by K, so that in all the computations only 
integral numbers appear. The set X (63) is thus transformed into XK (B) = IX: 

xi > 0 for i = 1, * * *, 5, and EB Xt = Kv(B) for B E 63} . Then the computer examines 
all the integral points in XK (LB), taken in lexicographic order; those points that 
satisfy equations (4.6) with e = 3 are stored in the memory for use in step B. 

The flow chart in Figure 1 describes the order of the computations for step A. 
All the expressions e (S, x) are computed immediately after a point x is generated. 
The functions sij (x) are computed only when needed in the course of the check. 

generate check if x s store x 

x in the compute satisfies yes in memory 

lexicographic e(S,x), SCN (46for use in 

order z step B 

FIGURE 1. Order of computations for step A. 

take the 
nex point. 

nega tive 

cekpositive, compute ; positive che ck 

xi+ I Sij(X) kndsji (x) L X F (X) -S;i (X)+,E 
take zero zero non- negative 
the next I 
pair check if ceck che ck 

'~~~~l pirs were non-ne ative, poiiv, 

no 

yes negative zero 

take the next take the next 
point point 

FIGURE 2. Check if x satisfies (4.6). 
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The check deserves special attention: it consists of comparing the functions si, (x) 
and sji (x), for all the pairs {i, jJ of different players that belong to the same coali- 
tion B E (B. The details are given in the flow chart in Figure 2. 

When the point stored in the memory differs from its predecessor only in the last 
two coordinates, which is the case most frequently encountered, the expressions 
e (S, x) are computed directly from those of the predecessor, in an easy way. 

Another device to save time is the following: when a point is rejected, the check 
of the next point begins by examining the last pair that was inspected before, i.e. 
the pair that caused the rejection. 

6. Step B. The data of step B consists of the data of Step A plus the list of the 
points that were found 3/K-balanced in step A, where K is the denominator of 
step A. These points form a set which is a 6 (K)-kernel. Step B consists of finding 
all the rational points with denominator not exceeding K5 that are in the intersec- 
tion of the kernel and the 6 (K)-neighborhood of the kernel determined by step A, 
and determining which of these points are extreme in the polyhedra defined by 
(3.2). 

The new problenms in step B are how to generate the points to be examnined, and 
how to check extremality. The procedure of actually checking whether the point is 
in the kernel is the same as that of step A, except that now we examine if the points 
satisfy (3.1) and not (4.6). 

The order of the computations is as follows. We take the denominators we have 
to examine in their natural order. When we reach a denominator K1 we multiply 
v by K1, so that only integral numbers will appear in the computations. After the 
multiplication, the points that passed step A are taken from the list, and for each 
point we examine all the integral points of Xx1 ((B) that are in a 6 (K)Kl-neighbor- 
hood of it, where K is the denominator of step A, and 

XKR(0) = {XX:X = Ofori-1,.v,5and x =K1V(B) forB E}. 
B 

For a point taken from the list of step A, we compute first the bounds that define 
its a (K)Kl-neighborhood and afterwards we check all the integral points in the 
neighborhood, taken in the lexicographic order, for membership in the kernel. 

Each point x that emerges from this procedure is in the kernel. The next task 
is to check for extremality, i.e. to check whether x is an extreme point of one of 
the polyhedra Cp defined by (3.2). Now it is possible that x is in more than one 
of these polyhedra. Let Ex be the intersection of all the C. to which x belongs. 
Certainly, if x is extreme in one of the Cp, then it is extreme in Ex ; the converse 
is also true." What we must therefore check is whether x is extreme in Ex. 

Among the linear inequalities a * y _ b defining Ex, some are satisfied as equali- 
ties by x; denote these by 

a, i y > ci , a2.y >-C2 , .., am.my _> cmy 

where the ai are vectors depending on x and the c1 are scalars depending on x. Thus 
we have 

(6.1) a x= cl, a2*x= c2, ..,amnx=crn. 

I This follows from the fact that the intersection of any two C, is a face of both. 
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The point x is extreme in Ex if and only if there are 5 linearly independent ai, i.e. 
the rank of the matrix Ax formed by the ai is 5. To find the rank of Ax, we form a 
matrix D(x) of zeros and ones as follows: to each pair of distinct players i and j 
in the same coalition B E (B, there is a row D( j) in the matrix. Let the coalitions' in 

Ti, be SMj,* -, S83; then D(ij) = (d), , d(i)), where dij)= 0 or 1, according 
as e (Skj) < sij (x) or e (Skj) = sij (x). Consider the system of linear equations 

e(S4j) = e(Si,)) 

where k, k', i, j, range over values such that 

(6.2) d kJ) dk'i) = 1 and si (x) = sj, (x). 

This system is closely related to the system (6.1). More precisely, let fkj be the 
incidence vector7 of the coalition j , and let Fx be the matrix whose rows are the 
unit vectors e' for i obeying xi = 0, the incidence vectors of the coalitions B in the 
coalition structure 63, and the vectors f j- , where k, k', i, j, range over values 
such that (6.2) holds; then Fx has the same rank as A.. The test of extremality 
that we use consists of finding the rank of Fx for each x. Once a point x has been 
found to be extreme (i.e. Fx has been found to have rank 5), it is stored in the 
memory together with the matrix D(x), until all the extreme points have been 
found. 

There remains only the problem of grouping the extreme points according to the 
various polyhedra Cp to which they belong. Now it can be proved that the kernel 
of a five person game is one-dimensional, i.e. consists of a finite union of points and 
line segments. So the only question we have to settle is which pairs of extreme 
points can be joined by a line segment in the kernel. Let x and y be extreme points, 
and let D(x) and D(y) be their matrices. Then there is a convex polyhedron Cp 
that contains both x and y, if and only if for each two players i and j belonging to 
the sanme coalition B E 63, either xi = yi = 0 or Ek=1 d(i) (x) d(iJ) (y) > 0. So the 
question of "pairing" can be solved by computing the scalar products of the corre- 
sponding rows of D(x) and D(y). 

The output is a list of extreme points, together with a list of all pairs such that 
the line segment joining them is in the kernel; it gives a complete picture of the 
kernel. 

7. Weighted Majority Games. We recall a number of definitions and elementary 
facts. A game G = (N, v) is called superadditive if for every pair of disjoint coali- 
tions S and T, we have v(S U T) > v(S) + v(T); monotonic if for every pair of 
coalitions S and T such that S D T, we have v (S) _ v (T); constant-sum if v (S) + 
v (N - S) = v (N) for all S. A simple game is one whose characteristic function 
takes the values 0 and 1 only; then S is called winning if v (S) = 1, and losing if 
v (S) = 0. A weighted majority game is a simple game for which there exist n non- 
negative numbers w1 , * *, w,., and a real number q (usually non-negative) such 
that S is winning if and only if Eswi _ q. Then w1, * *, w. are called weights for 
the players, and q is called a quota; [q; wi, * - *, w.] is called a representation of the 
game, though often we will use it to refer to the game itself. The representation of 

6 Because n = 5 there are exactly 8 coalitions in each Tii . 
7 The vector whose rth member is 0 or 1 according as r is or is nta in Skj . 
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a given weighted majority game is in no sense unique. Two representations of the 
same game are called equivalent. A simple game is superadditive if and only if there 
is no pair of disjoint winning coalitions. A weighted majority game is always monot- 
onic, but it need be neither superadditive nor constant-sum; for example, [3; 1, 1, 
2, 21 is neither. Of course, both superadditivity and constant-sumness are intrinsic 
properties, i.e. they depend on the game (characteristic function) and not on its 
representation. 

A player i in a game (N, v) is called at least as desirable as another player j 
(in symbols i >- j) if v(S U {i} ) > v(S U {j} ) for all S containing neither i nor j. 
If i >j j and j > i then i and j are called symmetric (i r j). Every weighted major- 
ity game has a representation [q; w1 .**, wn] that completely reflects the desira- 
bility relation, i.e. such that i > j if and only if wi > wj ; but not every represen- 
tation need do this. Two games (N, v) and (M, u) are said to have the same 
desirability pattern if there is a one-one mapping sp of N onto M that preserves 
desirability, i.e. so that i > j if and only if so(i) >- ip(j). The desirability pattern 
is an intrinsic property of the game. 

A veto player i in a simple game (N, v) is a player such that any coalition S not 
containing i is losing. There may be more than one veto player in a game. A dummy 
is a player i such that v (S U {i} ) = v (S). If i is a dunmmy in a weighted majority 
game then the game has a representation in which w7 = 0. 

In this section we tabulate the kernels of all weighted majority games with at 
most 5 players, for the coalition structure consisting of the set N of all players only. 
From this table it is possible to compute the kernel of any superadditive weighted 
majority game (regardless of the number of players), for coalition structures in 
which the winning coalition8 has at most 5 players. We first describe the arrange- 
ment of the table, then show how to compute the kernels of any weighted majority 
game (with the above restriction) from it. 

In the table, the games are identified by representations. Since the kernel is an 
intrinsic property of the game, each game appears in only one representation. 
However, a user of the table may wish to find the kernel of a game for which he 
has a representation that does not appear in the table. In order to simplify the task 
of finding an equivalent representation in the table, it is desirable, insofar as pos- 
sible, to classify the games in the table by intrinsic properties. This is done in two 
ways. First, the table is divided into three parts: Games with veto players; super- 
additive games without veto players; and nonsuperadditive games without veto 
players (all three properties are intrinsic). Second, the gaines in the last two parts 
are classified by desirability pattern. Though the desirability pattern cannot always 
be read off at once from a given representation of a game, for a 5-person game it 
can usually be determined rather quickly. 

We first describe the second and third parts, which are the more interesting. 
The first column of the table is a serial number (to siinplify references to the table). 
The second column signifies the desirability pattern; the notation used is self- 
explanatory. The symbol for the desirability pattern is printed only next to the 
first game with this pattern, to make the table easier to read. The third column 
gives a representation of the gamne. The kernel of the game, with coalition structure 

8 Because of superadditivity there is at most one. 
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N, is given in the fourth column. The kernel usually consists of a point or an in- 
terval; there is one exception (game 5-71) in which it is V-shaped. When the, kernel 
consists of a single point, the point is given; when it is an interval, the two end- 
points are given; in the V-shaped case, all three vertices are given, with the one 
common to the two intervals between the other two. A common denominator is 
signified by /; thus 12234/12 signifies the point (1/12, 1/6, 1/6, 1/4, 1/3). 

In the first part, the games with veto players are listed and given serial numbers, 
but the kernels are not given nor are the games classified by desirability pattern. 
It can be shown that the kernel of a game with veto players (for coalition struc- 
ture {N}) consists of a single point, in which the veto players share the amount 1 
equally, and the remaining players get 0, (Example: The kernel of [5; 1, 1, 2, 2] 
is 0011/2.) Thus the kernel can be determined immediately as soon as the game is 
given, and there is no need for tabulation. The list is included for the secolndary 
purpose of completing the list of weighted majority games with at most 5 players. 

Games with dummies are excluded. A weighted majority game in which player 
1 is a du'mmy has a representation of the form [q; 0, w2,..., w,,], and its kernel is 
the set of all payoff vectors of the form (0, x), where x is in the kernel of [q; w2, 

'W,n]. 

To show how the table can be used in computing the kernels of superadditive 
weighted majority games for coalition structures other than {N}, we now discuss 
the notions of "pseudo-kernel" and "reduced game" due to Davis and Maschler 
[3, ?71. Suppose (N, v) is a game that does not necessarily satisfy the normaliza- 
tion assumptions v ({ i} ) = 0; as we will soon see, such games arise naturally in the 
process of computing the kernel of normalized games for certain coalition structures 
other than {N}. The kernel of a non-normalized game (N, v) is defined by re- 
normalizing. More precisely, define a game (N, u) by u(S) = v(S) - E's v({i}), 
and let K be the kernel of (N, u) for coalition structure (3; then the kernel of 
(N, v) for 63 is defined to be K + (v({ 1}), * - *, v ({n} ) ). Equivalently, the kernel of 
(N, v) may be defined by replacing the condition x; > 0 in the definition by xj > 
v ({j}). As it happens, though, this is not the definition that is appropriate for our 
current purpose. What is needed here is the pseudo-kernel, which is defined in 
literally the same way as in Section 2, retaining the condition xj > 0 even though 
v ({j} ) may differ from 0. 

To explain the notion of reduced game, we need the following notational device: 
If x is a payoff vector to the player set N, and if B c N, denote the vector {x }i of 
payoffs to B by XB . If x is viewed as a function from N to the reals, then xB is the 
restriction of x to B. 

Now let (N, v) be a monotonic (normalized) game, 63 = { B1, * , Bk} a coali- 
tion structure such that v (B2) = ... = v (Bk) = 0. Define the reduced game (B1 , v* ) 
by v* (B,) = v (B) and v* (B) = v (B U B2 U ... U Bk) for all B that are strictly 
included in B1; the game (B1, v*) will in general be neither monotonic nor nor- 
malized. It is now easily seen that x is in the kernel of (N, v) for coalition struc- 
ture 63 if and only if xi = 0 for i f B1 and XB1 is in the pseudo-kernel of (B1 , v*) 
for coalition structure { B1}. Of course, if (B1, v*) happens to be normalized, then 
its pseudo-kernel and its true kernel coincide. 

Suppose now that [q; w1 ,* * *, wn] is a superadditive weighted majority game, 
6 a coalition structure. Because of superadditivity there can be at most one winning 
coalition in 63. If there are none the kernel is trivial; assume therefore that B is 
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the unique winning coalition. Then the reduced game corresponding to the struc- 
ture 63 and the coalition B is the game [q - Ei,BWi ; WB]. The reduced game may 
or may not have some players whose quotas wi exceed the reduced quota q - 

EiOBWi * If it does, then those players will win by themselves, so that the reduced 
game will not be normalized. In either case, the kernel of the original game for the 
coalition structure G3 can be deduced from the pseudo-kernel of the reduced game 
for coalition structure { B}, with the understanding that the pseudo-kernel coincides 
with the kernel when the reduced game is normalized. 

For example, if we wish to find the kernel of [4; 1, 1, 2, 2] for the coalition struc- 
ture (123, 4), we are led to the reduced game [2; 1, 1, 2], in which player 3 wins 
by himself. The pseudo-kernel of the latter game for the coalition structuje { 123} 
is 112/4, so that the kernel of the original game for 1123, 4} is 1120/4. The true 
kernel of [2; 1, 1, 2] for {123} is 001, but this is irrelevant. 

The pseudo-kernels of weighted majority games with at most 5 players and at 
least 1 winning player are listed in the fourth part of the table. By using the en- 
tire table and the technique described above, one can obtain the kernel of any 
superadditive weighted majority game, with arbitrarily many players, for coalition 
structures in which the winning coalition has at most 5 players. 

The remarks made above about kernels of games with dummies apply also to 
pseudo-kernels. 

Example 7.3. Calculate the kernel of [7; 1, 2, 2, 3, 3] (game no. 5-41) for all 
coalition structures. 

Solution. It is necessary to consider only coalition structures of the form 
IB, N - B}, where B is winning. The winning coalitions are 12345, 2345, 1345, 
1234, 145, 234, 345, and coalitions obtained from these by replacing players by 
symmetric players. For B = N the kernel can be found by looking at the table. 
For B = {2345} we obtain [7 -wi ; 2, 2, 3, 3] = [6; 2, 2, 3, 3]. This representation 
does not appear in the table. To find an equivalent representation in the table, 
we note that it is superadditive and that its desirability pattern is aabb. The only 
game with these specifications is [4; 1, 1, 2, 2] (no. 4-8), and its kernel is 1122/6. 
Hence the kernel of our game for coalition structure {1, 2345} is 01122/6. For the 
coalition structure 11234, 5}, the reduced game is [4; 1, 2, 2, 3]. This representation 
appears in the table itself (no. 4-12), and so we obtain 12230/8 for the kernel. 
For {145, 23}, the reduced game is [3; 1, 3, 3]. This is a non-normalized game in 
which the first player is a dummy. Removing the dummy, we obtain [3; 3, 3], 
which is equivalent to [1; 1, 1] (game no. 2-2). Hence the pseudo-kernel of [3; 1, 3, 3] 
is 011/2, and that of the original game for the coalition structure { 145, 23} is 00011/2. 
The kernels for the other coalition structures are similarly obtained. The final 
result is as follows: 

Coalition structure Kernel 
12345 01122/6 
2345, 1 *1122/6 
1345, 2 0*111/3 
1234, 5 1223*/8 
145, 23 0**11/2 
234, 15 **112*/4 
345, 12 **111/3 
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TABLE 1. Weighted Majority Games With at Most 5 Players and Their Kernels 

Serial Serial Serial 
num- Game num- Game num- Game 

ber ber ber 

1. GAMES WITH VETO PLAYERS 

2-1 [2; 1,1] 5-1 [5; 1,1,1,1, 1] 5-10 [7; 1,1, 2, 2, 2] 
3-1 [3; 1, 1, 1] 5-2 [5; 1, 1, 1, 1, 2] 5a-11 [7; 1, 1, 2, 2,3] 
3-2 [3; 1, 1, 2] 5-3 [5; 1, 1, 1, 1, 3] 5-12 [7; 1, 1, 2, 2, 4] 
4-1 [4; 1, 1, 1, 1] 5-4 [5; 1, 1, 1,1, 4] 5-13 [7; 1, 1, 2, 2, 5] 
4-2 [4; 1, 1, 1, 2] 5-5 [6; 1, 1, 1, 2, 2] 5-14 [8; 1, 1, 2, 3, 3] 
4-3 [4; 1,1, 1, 3] 5-6 [7; 1,1,1, 3, 3] 5-15 [8; 1,1, 2, 3, 5] 
4-4 [5; 1, 1, 2, 2] 5-7 [6; 1, 1, 1, 2, 3] 5-16 [9; 1, 2, 2, 3, 4] 
4-5 [5; 1,1, 2,3] 5-8 [6; 1,1,1, 2, 4] 5-17 [9; 1, 2, 2, 3, 5] 

5-9 [7; 1, 1, 1, 3, 4] 

Serial Desirability Game Kernel 
number pattern 

2. SUPER ADDITIVE GAMES WITHOUT VETO PLAYERS 

3-3 aaa [2; 1, 1, 1] 111/3 
4-6 aaaa [3; 1, 1, 1, 1] 1111/4 
4-7 aaab [3; 1, 1, 1, 2] 1112/5 
4-8 aabb [4; 1, 1, 2, 2] 1122/6 
4-9 abbc [5; 1, 2, 2, 31 0111/3 
5-18 aaaaa [3; 1,1, 1, 1, 1] 11111/5 
5-19 [4; 1, 1,1,1, 1] 11111/5 
5-20 aaaab [4; 1, 1, 1, 1, 2] 11112/6 
5-21 [4; 1, 1, 1, 1, 3] 11113/7 
5-22 aaabb [4; 1, 1, 1, 2, 2] 22244/14 

00077/14 
5-23 [5; 1, 1, 1, 2, 2] 11122/7 
5-24 [6; 1, 1, 1, 3, 3] 11133/9 
5-25 [7; 2, 2, 2, 3, 3] 22222/10 

00055/10 
5-26 aaabc [5; 1, 1, 1, 2, 3] 11123/8 
5-27 aabbb [5; 1, 1, 2, 2, 2] 33333/15 

00555/15 
5-28 [6; 1, 1, 2, 2, 2] 11222/8 
5-29 aabbc [5; 1, 1, 2, 2, 3] 11223/9 
5-30 [6; 1, 1, 2, 2, 3] 11112/6 

00222/6 
5-31 [6; 1, 1, 2, 2, 4] 11224/10 
5-32 [7; 1, 1, 3, 3, 4] 00111/3 
5-33 [8; 1, 1, 3, 3, 5] 00111/3 
5-34 [8; 2, 2, 3, 3, 4] 11111/5 
5-35 aabcc [6; 1, 1, 2, 3, 3] 00111/3 
5-36 aabcd [7; 1, 1, 2, 3, 4] 00111/3 
5-37 [9; 2, 2, 3, 4, 5] 11122/7 
5-38 abbbc [6; 1, 2, 2, 2, 3] 12223/10 
5-39 [7; 1, 2, 2, 2, 3] 01111/4 
5-40 [7; 1, 2, 2, 2, 5] 01112/5 
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TABLE 1-Continued 

Serial Desirability Game Kernel 
number pattern l l 

2. SUPERADDITIVE GAMES WITHOUT VETO PLAYERS-Continued 

5-41 abbcc [7; 1, 2, 2, 3, 3] 01122/6 
5-42 [8; 1, 2, 2, 3, 3] 01111/4 
5-43 abbcd [7; 1, 2, 2, 3,4] 01112/5 
5-44 [8; 1, 2, 2, 3, 4] 12234/12 
5-45 [9; 1, 2, 2, 4, 5] 01122/6 
5-46 abccd [8; 1, 2, 3, 3, 4] 00111/3 
5-47 [8; 1, 2, 3, 3, 5] 0111275 
5-48 abcde [9; 1, 2, 3, 4, 5] 00111/3 

3. NONSUPERADDITIVE GAMES 

4-10 aaaa [2; 1,1,1,1] 1111/4 
4-11 aabb [3; 1,1, 2, 2] 1111/4 

0022/4 
4-12 abbc [4; 1, 2, 2, 3] 1223/8 
5-49 aaaaa [2; 1,1, 1,1,1] 11111/5 
5-50 aaaab [3; 1,1,1,1, 2] 11112/6 
5-51 aaabb [3; 1,1,1, 2, 2] 11122/7 

11111/5 
5-52 [4; 1, 1,1, 3, 3] 22222/10 

00055/10 
5-53 [6; 2, 2, 2, 3, 3] 22233/12 
5-54 aaabc [4; 1,1,1, 2, 3] 11112/6 

00033/6 
5-55 aabbb [3; 1,1, 2, 2, 2] 33333/15 

00555/15 
5-56 [4; 1,1, 2, 2, 2] 11222/8 
5-57 aabbc [4; 1,1, 2, 2, 3] 11223/9 
5-58 [5; 1,1, 2, 2, 4] 00336/12 

22224/12 
5-59 [6; 1,1, 3, 3, 4] 11334/12 
5-60 [6; 1,1, 3, 3, 5] 00112/4 
5-61 [7; 2, 2, 3, 3, 4] 44448/24 

33666/24 
5-62 aabcc [5; 1,1, 2, 3, 3] 00044/8 

11222/8 
5-63 aabcd [5; 1,1, 2, 3, 4] 00011/2 
5-64 [8; 2, 2, 3, 4, 5] 00088/16 

22345/16 
5-65 abbbc [4; 1, 2, 2, 2, 3] 12223/10 
5-66 [5; 1, 2, 2, 2, 3] 03333/12 

22224/12 
5-67 [6; 1, 2, 2, 2, 5] 12225/12 
5-68 abbcc [4; 1, 2, 2, 3, 3] 11111/5 
5-69 [5; 1, 2, 2, 3, 3] 01111/4 
5-70 abbcd [5; 1, 2, 2, 3, 4] 11122/7 
5-71 [6; 1, 2, 2, 3, 4] 03333/12 

12234/12 
00066/12 
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The stars indicate players not, in the winning coalition of the coalition structure, 
who therefore automatically get 0 (as distinguished from players who are in the 
winning coalition, but get 0 anyway). 

The authors have tabulated the kernels of all superadditive 5-person games 
for all coalition structures, by the above procedure. The table is available from 
thein upon request. 

We remark that all kernels and pseudo-kernels appearing in the table appear as 

TABLE 1-Continued 

Serial Desirability Game Kernel 
number pattern 

3. NONSUPERADDITIVE GAMEs-Continued 

5-72 [6; 1, 2, 2, 4, 5] 00011/2 
5-73 abccd [6; 1, 2, 3, 3, 4] 01111/4 
5-74 [7; 1, 2, 3, 3, 5] 12335/14 
5-75 abcde [7; 1, 2, 3, 4, 5] 00022/4 

01111/4 

Serial Desirability Game Pseudo-kernel 
number pattern 

4. GAMES WITH WINNING PLAYERS AND THEIR PSEUDO-KERNELS 

1-1 a [1;]1/1 
2-2 aa [1 1,11 11/2 
3-4 aaa [1; 1,1,1] 111/3 
3-5 aab [2; 1, 1, 2] 112/4 
4-13 aaaa [1; 1,1,1,1] 1111/4 
4-14 aaab [2; 1, 1, 1, 2] 1112/5 
4-15 [3; 1, 1, 1, 3] 1113/6 
4-16 aabb [2; 1, 1, 2, 2] 1122/6 
4-17 aabc [3; 1, 1, 2, 3] 0011/2 
5-76 aaaaa [1; 1,1,1, 1,1] 11111/6 
5-77 aaaab [2; 1, 1, 1, 1, 2] 11112/6 
5-78 [3; 1,1 1,1, 13] 11113/7 
5-79 [4; 1, 1, 1, 1, 4] 11114/8 
5-80 aaabb [2; 1, 1, 1, 2, 2] 11122/7 
5-81 [3; 1, 1, 1, 3, 3] 11133/9 
5-82 aaabc [3; 1, 1, 1, 2, 3] 11123/8 
5-83 [4; 1, 1, 1, 2, 4] 00011/2 
5-84 [4; 1, 1, 1, 3, 4] 00011/2 
5-85 aabbb [2; 1, 1, 2, 2, 2] 11222/8 
5-86 aabbc [3; 1, 1, 2, 2, 3] 00222/6 

11112/6 
5-87 [4; 1, 1, 2, 2, 4] 11224/10 
5-88 [5; 1, 1, 2, 2, 5] 00112/4 
5-89 aabcc [3; 1, 1, 2, 3, 3] 00111/3 
5-90 aabcd [5; 1, 1, 2, 3, 5] 00011/2 
5-91 abbed f4; 1, 2, 2, 3, 4] 12234/12 
5-92 [5; 1, 2, 2, 3, 5] 01112/5 
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the kernel of some 6-person superadditive game, with an appropriate coalition 
structure. 

The computations of the kernels in Table 1 were carried out on the CDC-1604-A. 
Trial and error led to the conclusion that the denominator 24 is fairly efficient for 
step A. With this denominator, the time needed for the entire calculation of the 
kernel of a simple game (both steps) is approximately 55 seconds (the addition 
time of the CDC-1604-A is 7.2 , sec.). Of this, step A takes 18-27 seconds, and step 
B the remainder. 

To minimize the human factor in the computation of the table, and consequent 
mistakes, a computer program was written to compute the characteristic function 
of a weighted majority game from its representation. It was therefore pbssible to 
use the representations as input to the computer. 

A word is in order about the compilation of the games that appear in the table. 
For games with up to four players we used Shapley's list [14]. For games with 5 
players, we used Isbell's list [7] of 6- and 7-person superadditive constant-sum 
weighted majority games. The work was divided into two steps: 

(i) Deriving all the 6-person superadditive weighted majority games from 
Isbell's list. 

(ii) Deriving all the 5-person weighted majority games from the 6-person 
superadditive ones. 

To accomplish step (i), we made use of the "zero-sum (n + l)-person exten- 
sion" of an n-person game due to von Neumann and Morgenstern9 [10, p. 506]. 
The zero-sum extension is always unique. For weighted majority games, if 
[q;w, W -, , w,?1] is zero-sum, then it is the zero-sum extension of [q; w1 , , 
w-I, w,+l *... *, wn+lJ (which is always superadditive) for every j; and conversely, if 
[q; w, * w.] is superadditive, then there is a w (not necessarily > w,n) such that 
[q; w, wn, wI is its zero-sum extension. Step (i) consisted of compiling all 
the 6-person games [q; w,. , wjl, Wj+1 ' W7] for each [q; W1 ,. , w7] in 
Isbell's list and each j between 1 and 7, and adding to them the games in Isbell's 
list of 6-person games. It can be deduced from the fact that the "zero-sum ex- 
tension" is defined in an intrinsic way that this yields all the 6-person weighted 
majority superadditive games. 

To accomplish step (ii), we made use of the Maschler-Davis "reduced game" 
(defined above); this too is an intrinsic process. Our procedure was to compile all 
the 5-person games [q - wj ;w, ,w * *, wj_l, wj.i , * *, w6] for all [q; w, , * *, we] 
resulting from step (i) and all j from I to 6. This yields all weighted majority 5- 
person games. 

Steps (i) and (ii) were programmed on the CDC-1604-A. Of course the final 
list contained many duplications. Duplications due to multiple appearances of the 
same representation were removed first; then the characteristic function of each 
representation was computed and duplications due to a characteristic function 
having different representations were removed. 

8. Extreme Games. For a fixed player set N with n members, the set of all 
superadditive games G = (N, v) may be considered a cone in euclidean space of 

9 The "zero-sum extension" of the superadditive game (N, v) is the game (N U tn + 1 1, w), 
where w(S) = v(S) for n + 1 f S and w(S) = v(N) - v(N - S) for n + 1 E S. 
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dimension 2' - n - 1 (2n is the number of coalitions, and v is fixed on the empty 
coalition and on the 1-member coalitions). A game (N, v) is called extreme if it is on 
an extreme ray of this cone; that is, if v is not the sum of two unproportional 
superadditive characteristic functions. All superadditive simple games are extreme. 

Constant-sum extreme games have received particular attention, in papers by 
Griesmer [5] and Gurk [6]. When n _ 4 all constant-sum extreme games are simple; 
however, when n _ 5 there are non-simple constant-sum extreme games as well. 
Gurk [6] found a method of determining all constant-sum extreme games with five 
players; it turns out that in addition to the simple ones, there are 8 essentially 
different such games.'0 In all these games the characteristic function v takes exactly 
three values-in the normalization we adopt here, they are 0, 1/2, and 1. 

We have constructed these 8 games by Gurk's method, and computed their 
kernels, for all coalition structures, with the program described in the previous 
sections; the results are tabulated in Table 2. For general integral games, the com- 
puter time needed for the computation of the kernel corresponding to a coalition 
structure 6B depends monotonically on the values of v, and in particular on the v (B) 
for B in 6M. In the integral games corresponding to the 8 extreme games under 
consideration, v takes the values 0, 1, and 2; after simple games, therefore, these 
may be expected to be the games whose kernels may be most quickly computed. 
As it turned out, the time needed for the coalition structure containing the all- 
player coalition only was usually about 4 or 5 minutes (compared with about 1 
minute for simple games). For other coalition structures, the computation time 
was a matter of seconds. 

From the theoretical viewpoint, the kernels tabulated here are interesting be- 
cause there are coalition structures in which more than one coalition gets positive 
payoff; for superadditive simple games, this is impossible. 

We now describe the construction of the table and its use. Each of the eight 
games is identified by the set of 3-person coalitions whose value is 1; the value of 
each of the remaining 3-person coalitions is 1/2. These conditions determine a 
unique constant-sum 5-person game such that v (N) = 1. 

For each game there are two columns; in the left column there is a list of coali- 
tion structures, and in the right column the kernels corresponding to these coalition 
structures are tabulated. In no case do we list all the coalition structures; in the 
next paragraph we will discuss how the kernels corresponding to the unlisted coali- 
tion structures may be obtained. When the kernel consists of a single point, the 
point is given; when it is an interval, the two end-points are given; when it is V- 
shaped, all three vertices are given, with the one common to the two intervals 
between the other two. In this table we do not use the "common denominator" 
notation adopted in ?7. When a coalition consists of a single player, that player 
necessarily gets 0 in the kernel; in that case his payoff in the kernel is indicated by 
a star rather than a 0. When there is more than one non-flat" coalition in a struc- 
ture, then one of these is picked arbitrarily and its members (in the left column) 
and payoffs (in the right column) are italicized. Thus the coalition structure in 

10 I.e. every 5-person non-simple constant-sum extreme game is obtained from one of these 
eight by permuting the players and multiplying the characteristic function by a non-negative 
constant. 

11 A coalition S is flat if v(S) = 0. 



TABLE 2 
Kernels of Five Person Constant-Sum Non-Simple Extreme Games 

Coalition Kernel Coalition Kernel 
structure structure 

Game No. 1 Game No. 6 
v(S) = 1/2 for all S with 3 members v(f1, 2, 31) = v({3, 4, 51) = v(ll, 2, 51) = 1 

12345 1/5 1/5 1/5 1/5 1/5 12345 1/6 1/6 1/3 0 1/3 
1234, 5 1/4 1/4 1/4 1/4 * 1 2345 * 3/8 1/4 1/8 1/4 
123, 46 1/6 1/6 1/6 1/4 1/4 3, 1245 1/4 1/4 * 1/4 1/4 
12, 34, 5 1/4 1/4 1/4 1/4 * 4 1235 1/6 1/6 1/3 * 1/3 

_________ - ____ - _____ - ____ - _____ - 124, 36 3/16 3/16 1/4 1/8 1/4 
Game No. 2 1345, 2 1/6 1/6 1/3 0 1/3 

v((2, 3, 41) = 1 135, 34 1/2 0 0 1/3 0 
____________________ ____ ____ _____ ~0 3/8 1/4 1/8 1/4 
123243545 | 1/8 | 1/4| 1/4 1 l/44 | 1/8 | 1, 24, 36 * 3/8 1/4 1/8 1/4 

1, 2345 14 1/4 1/4 1/4 1/25 2 01 * / 0/ 
2, 1345 1/6 * 1/3 1/3 1/6 4, 13, 23 1/6 1/6 1/3 * 1/3 
123, 46 0 1/4 1/4 1/4 1/4 ___________ ___ __ 

125, 34 1/8 1/4 1/4 1/4 1/8 - _ . __ 
1, 23, 4 * 1/4 1/4 1/4 1/4 Game No. 7 
3, 12, 46 1/6 1/3 * 1/3 1/6 v(Q1, 2, 3)1 = v({2, 3, 41) = v(13, 4, 5J) = 
_ _ _ _ _ _ _ _ .. .__ _ , .__ _ _ _ _ _ - _ _ _ _ ____ V(11 , 4, 5 1 

Game No. 3 
v({2, 3, 41) = v(13, 4, 51) = 1 12345 2/7 1/14 2/7 2/7 1/14 

3,________ - ____ - -- - ____ _____ _____ 1, 2345 * 1/4 1/4 1/4 1/4 
12345 0 1o/44 1/4 1/42 1/4 , 1345 1/4 * 3/8 1/4 1/8 

1, 2345 * 1/4 1/4 1 /4 1/4 3, 1245 1/6 1/3 * 1/3 1/6 
2, 1345 1/12 1/3 1/3 1/4 134, 36 0 1/3 0 1/2 0 
3, 1245 1/8 1/4 * 3/8 1/4 1/6 1/4 1/6 1/6 1/4 /O ~~ ~~0 0 1/2 0 1/2 
123, 46 0 1/4 1/4 1/4 1/4 135, 34 0 1/2 0 0 1/2 
134, 36 0 1/4 1/4 1/4 114 1/4 1/8 1/4 3/8 0 
235, 14 1/6 1/10 3/10 3/10 1/10 235, 14 1/4 1/16 5/16 1/4 1/8 
125, 34 0 1/4 1/4 1/4 1/4 125 1/4 1/8 1/4 1/4 1/8 
1,v23, 4 26 1/4 1/4 1/4 1/4 1,24, * 20 1/ 1/2 0 
1, 25, 34 1/4 1/4 1/4 1/4 1/2 0 0 1/3 
2, 13, 45 1/6 * 1/3 1/3 11/6 2, 14, 36 1/4 3 3/8 1/4 1/8 
3, 14,256 1/8 1 /4 3/8 1/4 3, 14, 6 0 1/ * 1/2 0 

/G_______ - /6 ____ -/6 _____ , 2345 -'" __1/4 1/4 1/4 1/4 
Game No.4 1, 25, 34 * 0 1/2 0 1/2 

v(vl, 2, 31) = v((3, 4, 51) = 1 * 1/2 0 1/3 0 

12345 1/6 1/6 1/3 1/6 1/6 Game No. 8 
1, 2345 * 1/3 1/3 1/6 1/6 v(I1, 2, 31) = v(12, 3, 41) = v(13, 4, 51) 
3, 1245 1/4 1/4 * 1/4 1/4 v(11, 4, 51) = v(11, 2, 51) = 1 
134, 235 0 11/3 1/3 1/6 1/6 

1/6 11/6 1/3 0 1/3 12345 1/5 1/5 1/5 1/5 1/5 
125, 34 1/6 1/6 13 11/6 1/6 1, 2345 1/3 1/6 1/6 1/3 
3,14,6 0 1/3 * 1/2 0 124,3 6 0 1/2 0 0 1/3 

1/2 0 0 1/3 1/6 1/6 1/4 1/6 1/4 
1, 34, * 1/3 1/3 1/6 1/6 1/2 0 1/3 0 0 

_______ - ___ - ___ ___ - ____ -1, 24, 365 1/2 0 0 1/3 
Game No. 6 1/4 1/4 1/4 1/4 

v(12, 3, 41) = v(13, 4, 51) = v({1, 4, 51) = 1- _ _-_ _ _-_ _ _ _ _ _-_ _ _ 

12345 1/9 1/9 2/9 1/3 2/9 
1, 2345 * 1/12 1/4 1/3 1/3 
3, 1245 1/8 1/4 * 3/8 1/4 
4, 1235 1/6 1/6 1/3 * 1/3 
123, 46 1/6 1/12 1/4 1/3 11/6 
135, 34 1/12 1/6 1/6 1/3 1/4 
124, 35 0 1/6 1/6 1/3 1/3 

1/6 0 1/3 1/3 1/6 
134, 36 0 1/6 1/6 1/3 1/3 

1/12 1/4 1/12 1/3 1/4 
1, 25, 34 * 1/6 1/6 1/3 1/3 
1, 24, 35 * 1/6 1/6 1/3 1/3 
3, 14, 36 1/8 1/4 * 3/8 1/4 
4,13,365 0 0 1/2 * 1/3 

1/4 1/4 1/4 * 11/4 
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the right column can be determined at a glance from the type font, without having 
to refer to the left column; the left column is retained chiefly to facilitate reference 
to the table. 

The coalition structures that are listed for each game are of the types {abcde} 
la, bcde}, {abc, de}, and I a, bc, de}. The kernels corresponding to some of the omitted 
ones can be obtained by applying the symmetries of the game to the tabulated 
kernels. In any other omitted structure, there is at most one non-flat coalition, 
and it has at most 3 players. Therefore by the Davis-Maschler "reduced game" 
technique explained in the previous section, the calculation of the corresponding 
kernel is equivalent to the calculation of the pseudo-kernel of a game with at most 
3 players. If the game has exactly 3 players, then all 2-player coalitions have value 
1. The pseudo-kernel may then be read off from Table 3, after applying the appro- 
priate permutation. If the game has 2 players, then all 1-player coalitions have 
value 1, and the pseudo-kernel is (1/4, 1/4) or (0, 0) according as the 2-player 
coalition has value 1/2 or 0. 

The Hebrew University of Jerusalem 
Weizmann Institute of Science, 
Rehovoth, Israel 

TABLE 3 
Pseudo-Kernels of Certain 3-Person Games 

v({12}) = v({13}) = v({23}) = 1 

v({123}) v({1}) v({2}) v({3}) Pseudo-Kernel 

1/2 1/2 1/2 1/2 1/6 1/6 1/6 
1/2 1/2 1/2 1 1/8 1/8 1/4 
1/2 1/2 1 1 0 1/4 1/4 
1/2 1 1 1 1/6 1/6 1/6 
1 1/2 1/2 1/2 1/3 1/3 1/3 
1 1/2 1/2 1 1/4 1/4 1/2 
1 1/2 1 l1 0 1/2 1/2 
1 1 1 1 1/3 1/3 1/3 
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